NVMTS2003 PROGRAM

	Introduction & Welcoming Remarks		
	NVMTS2002 Best Presentation Award Recipient: Michelle Bell Radiant Technologies		[14
[1]	Keynote Address: Difficult Predictions: Future OSS Goals and IT/IS Investments Dr. Harley Thronson Director of Technology, Office of Space Science, NASA		
[2]	Invited Talk: Non-Volatile Memory Technology Programs at the Defense Threat Reduction Agency Radiation Hardened Microelectronics Project; by L. Cohn, DTRA		[15
	Applications R. Katti Honeywell Solid State Electronics Center, Chair		[L2
[3]	Radiation Effects on Microelectronics and Future Space Missions; by J. Patterson, JPL		[16
[4]	Non-Volatile Memory With A Mission; by R. Sinclair, NVE		[17
[5]	Scaled SONOS NVSM Devices for Space and Military Applications; by M. White, et al, Lehigh Univ.		[18
[6]	Case Study: A Commercially Fabricated 256K RadHard ViaLink® PROM; by B. Baranski and A. Jordan, Aeroflex	I	[19
[7]	Invited Talk: Non-Volatile Memory Needs for Air Force Space Systems and Approaches to Radiation Harden Non-Volatile Memories by the Application of Design Techniques, R. LaCoe, et al, Aerospace Corporation		
	Processing & Modeling G. Derbenwick, Celis Semiconductor, Chair		[20
[8]	Hardened by Design Ferroelectric Memories for Space Applications; by S. Philpy, et al, Celis Semiconductor		[21
[9]	Demonstration Of A 4 Mb High Density, Embedded Ferroelectric Memory Technology; by S. Gilbert, Agilent Laboratories		[22
[10]	High-Speed 128Kbit MRAM Core in a 0.18µm CMOS Technology Utilizing PtMn-based Magnetic Tunnel Junctions; by W. Gallagher and S. Parker, IBM		[23
[11]	Stabilization of Magnetism in Ferromagnetic Dot Arrays Towards Terabit per Square Inch Storage; by I. Roshchin, et al, University of California at San Diego		[24
[12]	Biased Target Ion Beam Deposition of GMR Multilayers; by H. Wadley, et al, University of Virginia		[25
[13]	Non Volatile Memory Cell Design : Sizing Assisted By A Predictive Model; by P. Canet, et al, L2MP		
L1	LATE PAPER: Honeywell Radiation Hardened Non-Volatile Memory (MRAM) Product Development; by R. Katti, Honeywell		

THURSDAY Nov 13		
	Reconvening Remarks	
[14]	Invited Talk: Ballistic Magnetoresistance in Ferromagnetic Nanocontacts; by H-D Chopra, et al, SUNY/Buffalo	
	INNOVATIVE CONCEPTS J Zhu Carnegie-Mellon University, Chair	
[15]	Invited Paper: SpinRAM, A 1Gbit Nonvolatile Memory; by R Spitzer, IME	
[L2]	LATE PAPER Hewlett-Packard's Atomic Resolution Storage (ARS) Program; by K. Eldredge, HP Boise	
[16]	A Low Power Vertical MRAM ; by X. Zhu and J. Zhu, <i>Carnegie Mellon University</i>	
[17]	Electrical Characterization of Solid State Ionic Memory Elements; by R. Symanczyk, et al, Infineon	
[18]	Fabrication and Properties of Electrical Pulse Induced Resistive Memory; by N. Wu, et al, University of Houston	
[19]	Holographic Memory Using MEMS Mirror Beam Steering Technology; by T-H Chao, et al, JPL	
	Test Ken Hunt AFRL Chair	
[20]	Endurance cycling in extreme environments; by S. Guertin, JPL	
[21]	TID, SEE and Radiation Induced Failures in Advanced Flash Memories; by D. Nguyen, JPL	
[22]	Chalcogenide Random Access Memory Technology Status; by J. Maimon, et al, BAE	
[23]	SuperFlash® Memory Program/Erase Endurance ; by A.Kotov, et al, SST Corporation	
[24]	Characterization of Nonvolatile Transistors; by J. Evans, Radiant Technologies	
[25]	SPECIAL PANEL SESSION Packaging Technologies MCP and SiP, R. Andrei, Web-Feet Research, Chair	
	END of SYMPOSIUM	